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Critical point of a trimgular Potts model with two- and 
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Abstract. The q-state Potts model on the triangular lattice with nearest-neighbour inter- 
actions and three-site interactions in half of the triangular faces is considered. The exact 
duality relation is re-examined from the point of view of determining its critical point. Using 
the continuity and uniqueness arguments we determine the exact critical point in the 
ferromagnetic model. It is argued that a transition exists in an antiferromagneticmodel only 
for q=3.  A conjecture is then made on the phase diagram for the 4 = 3 isotropic model. 
These results are used to determine the exact criticality of a dilute Potts model on the 
honeycomb lattice. 

1. Introduction 

The q-state Potts model on the triangular lattice has been of considerable recent 
interest. The model with nearest-neighbour ferromagnetic interactions is known to 
possess a unique transition (Baxter et a1 1978, Hintermann et al 1978) similar to that of 
the square lattice (Baxter 1973). The q = 3 model is of further importance because of its 
possible realisation in the adsorption of krypton atoms on graphite (Berker et a1 1978), 
and because of the expected ordering at low temperatures for antiferromagnetic 
interactions. 

As suggested by the lattice symmetry, investigation of the triangular Potts model is 
often facilitated by the inclusion of three-site interactions. Schick and Griffiths (1977) 
have carried out a renormalisation group analysis in this enlarged parameter space, 
which leads to a qualitative understanding of the q = 3 ferromagnetic and antifer- 
romagnetic transitions. Quantitative analysis of this model, especially for general q, 
appears to be difficult, and has been lacking up to now. 

A model which differs slightly from that considered by Schick and Griffiths (1977) is 
one in which the three-site interactions are present in half of the triangular faces. This 
model is unique in that it possesses an exact duality relation (Baxter eta1 1978, Wu and 
Lin 1980). However, the implications of this duality relation appear not to have been 
explored in detail. In particular, its relationship with the determination of the transition 
point has not been satisfactorily discussed. We consider this problem here. We shall 
re-examine the implications of the duality relation, making clear the necessary 
assumptions in determining the Potts critical point. 

t Supported in part by National Science Foundation grant no DMR 78-18808. 
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2. Formulation 

Consider a q-state Potts model on a triangular lattice of N sites with two-site inter- 
actions c l ,  e2 and e3 (in the respective directions), and three-site interaction E sur- 
rounding every up-pointing (triangular) face. A drawing of the lattice can be found in 
figure 5 of Wu and Lin (1980). The Hamiltonian now reads 

where the summation is taken over all up-pointing faces and 

E a b c  = - ( E I a b r  + E Z a c a + c 3 8 a b  f E a a b c ) .  (2) 

Here a, b, c are the three sites surrounding an up-pointing triangle, C?ab = aKr(ta, &), 
8 a b c  = 8 a b a b c  and = 1,2 ,  . . . , q refers to the spin states at site a. For q = 2 this model is 
isomorphic to an Ising model (Wu and Lin 1980) and is exactly soluble. We shall 
therefore focus our attention on q 2 3. 

It has been shown both algebraically (Baxter et a1 1978) and graphically (Wu and 
Lin 1980) that the partition function 2 of the model (1) satisfies the following duality 
relation: 

f l  = e x p ( P 4  - 1 

y = e x p [ P ( ~  + ~ 1 + ~ ~ + ~ 3 ) 1 - ( f l + f ~ + f 3 +  1) ( 5 )  
and P = l /kT.  The duality relation (3) and (4) maps, for all q, the partition function 
onto itself along the pathst 

f ? / Y  = c1; C, = constants (6 )  

in the four-dimensional ( f l ,  y )  space (the w space). The sections IyI S q  of the path (6)  
map onto each other, while the sign of fl remains unchanged for y > 0 and reverses for 
y < 0. It is then clear that the fixed points of the transformation (4) are the hyperplane 

Y =q,  for y > 0 (7) 

Y =-4, f l  = 0,  for y < 0. (8) 

and the point 

It was conjectured (Baxter et a1 1978, Wu and Lin 1980) that, if a unique transition 
exists in the Potts model ( l ) ,  it occurs at (7). The conjecture is certainly verified by the 
exact q = 2 (Ising) and the E = 0, > 0 (Hintermann et a1 1978) critical points. 
However, since the self-dual path (6) does not describe a Potts model with fixed 
interactions, the validity of the above argument is at best dubious. We now examine the 
situation more closely. 

It is convenient to regard f ,  and y as the variables at this point and consider the 
per-site free energy F ( q ;  f l ,  f 2 ,  f3, y ) .  Besides an additive term which is analytic, F is 
again invariant under the transformation (4). Generally, the free energy F will be 

t The duality relation also maps the partition function onto itself along the q-dependent paths af: = y “  +q” 
for all real a and n. 
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singular along some ‘critical’ trajectory 
continuity assumption: 

in the w space. We now postulate the 

The critical trajectory Z in the w space is continuous. 

The assumption that the singularities of a thermodynamic free energy lie on a 
continuous locus in the parameter space appears to have been stated clearly first by 
Thibaudier and Villain (1972). In the present model this assumption is reasonable in 
view of the explicit expressions ( 5 )  of the variables fi and y. 

In a given model (1) with fixed ei and E ,  and as the temperature rises from 0 to 03, the 
variables fi and y as given by ( 5 )  trace a continuous thermodynamic path r in the (fi, y )  
space. If the path r happens to intersect Z, we say that a transition occurs in this Potts 
model at the point(s) of intersection. There is no transition if does not intersect Z. 

To proceed further, we now examine the locus of more closely. For this purpose it 
is convenient to name the q 3 3 model according to its ground-state configuration. 

The ground state can be the repetition of any one of the five configurations (around 
an up-pointing triangle) shown in figure 1. Specifically the system is 

(a) ferromagnetic if 

E + €1 + E 2 +  E 3  <{o, E i }  

0 > { E ; ,  E + €1 + E 2  + €3) 

Ei < (0 ,  Ej, E + E1 + € 2  + €3). 

(9) 

(10) 

(11) 

(b) antiferromagnetic if 

(c) paramagnetic if 

-(Et€,*€ 2 3  * E  ) 0 - €1 - € 2  - E 3  

Figure 1. The five possible ground state spin arrangements with the associated energies: ( a )  
Ferromagnetic. (6) Antiferromagnetic. ( c ) - ( e )  Paramagnetic. 

As the temperature is lowered from 03, the thermodynamic path r starts out from the 
origin initially tangent to the vector (ei, E )  in w space. The subsequent behaviour of r 
depends on the nature of the ground state: 

(a) Ferromagnetic. r eventually reaches, as p + 03, the hyperplane y = 03. It is 
easily verified that, for y 3 2 at least, y is a monotonically increasing function of p. 

(b) Antiferromagnetic. r starts out from the origin and terminates at the point 

(c) Paramagnetic. r starts out from the origin and reaches, as T + 0, f i  - -yi  = 03. 
Note that the paths r do not intersect, and that every point in the physical region of real 
ei and E ,  or 

( f i , ~ ) = ( - 1 , 2 ) .  

fi 3 -1, Y + f ~  + fi + f 3  3 -1 9 (12) 

is traversed by one and only one I‘. 
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With these considerations, we can divide w space into four regions: 
(a) Ferromagnetic region: 

y +f; + f k  3 0 

y +fi + fz +f3 3 0 

-1 G y + f l  +f2  +f3 s 0 

-lSf,SO 

for fi a (0 ,  f;, f k l  
Vf iGO 

(b) Antiferromagnetic region: 

(c) Paramagnetic region: 

fl a0 i # j , k  

-(fi + 1) < y + f; +fk s 0 

(d) Unphysical region: complement of the above three. 
The different regions for isotropic interactions f l  = f2 = f3 = f are shown in figure 2. 

-1 0 1 

f 

Figure 2. Regions in w space for the q 2 3  isotropic model. The ferromagnetic (F), 
antiferromagnetic (A) and paramagnetic (P) regions are described by (13)-(15). The shaded 
region is unphysical. Broken curves are examples of thermodynamic paths r. 

3. Ferromagnetic model 

For interactions subject to condition (9) favouring a ferromagnetic ground state, we 
expect a transition to exist, and shall assume that the transition is unique. We now 
proceed to show that, with our assumptions, the critical surface Z is indeed the 
hyperplane (7) or y = q. 
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First, due to the monotonic nature of y (for y > 2) in p, r intersects y = q only once. 
Now, the proof follows essentially from the continuity and uniqueness assumptions. To 
make the situation clearer, however, we start from the known result of E = 0 (Hinter- 
mann et a1 1978) that this particular I' intersects X at y = q. Consider now the model 
with an infinitesimal but non-zero E .  The two assumptions quoted above now dictate 
that the new r would again intersect X at y = q. Continuing in this fashion by varying E ,  

we eventually reach all points in y = q in the physical region, and establish y = q to be 
the only critical surface in the entire ferromagnetic region (13). It follows that, in a 
given Potts model of fixed E ,  and E subject to (9), a transition occurs at the conjectured 
point of y = q. 

4. Antiferromagnetic and paramagnetic models 

The duality relation (4) generally maps the antiferromagnetic and paramagnetic regions 
(14) and (15) into unphysical regions outside (12) and is therefore not very useful for 
extracting information. However, we do know that, for q 3 4, the antiferromagnetic 
ground state (figure ( lb) )  has a non-zero entropy. Argument can then be made as in 
Wannier (1950) that the states of different long-range orders can be mixed such that a 
fixed long-range order is no longer energetically favourable. Consequently, we expect 
no transition to occur?. For the q = 3 antiferromagnetic model, however, the ground 
state is six-fold degenerate. It is then expected that a critical temperature exists such 
that below it there is a long-range ordering. 

The situation with the paramagnetic model is the following: In the isotropic model 
(cl = e2 = E ~ )  the ground state has a non-zero entropy (valid for all q 2). As argued 
above, this fact alone is sufficient to rule out the occurrence of a transition. But the 
ground state degeneracy in the anisotropic model is of the order of (q - 1)N1'2. It is 
conceivable that one (or more) transitions may exist for q 3 3. 

5. Isotropic model 

We now consider the isotropic model = e2 = e3 for which definite conclusions can be 
drawn. For q 3 4, our discussion has led to the conclusion that a transition exists only in 
the ferromagnetic model. This has the consequence that y = q  is the only critical 
trajectory C in the physical region (12). For q = 3, however, both the ferromagnetic and 
antiferromagnetic models are expected to order at low temperatures; an additional 
branch of Z will appear in the antiferromagnetic region. 

For the q = 3 isotropic model we have seen that the critical trajectory C is y = 3 in the 
ferromagnetic region, and does not extend into the paramagnetic region. To determine 
the trajectory of the branch of Z in the antiferromagnetic region, we argue that it must 
pass through the two points (f, y )  = (-1,2) and (0, -1). To see this, write the energies 
of an antiferromagnetic model as 

- A = €  f 3 ~ 1  < O ,  E 1 < 0  (16) 

for which the thermodynamic path r is a curve connecting (0,O) and (-1,2). However, 

t Berker and Kadanoff (1980) have recently suggested the existence of an algebraic order in a state of 
non-zero entropy. We shall not consider such possibilities. 
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for A =  0, r becomes the line segment connecting (0,O) and (-1,3), while for el  = 0, r is 
the segment of y axis between (0,O) and (0, -1). Now there is no transition when either 
A = 0 or el  = 0. For small A or el we argue that kT,, while small, is still ‘large’ such that 
A/ kT,(A) + 0 or el /  T,(el) + 0. This appears to be a generally valid statement when one 
of the two or more interactions is vanishingly small, and is verified by the known critical 
points of the Ising model and the Baxter model. In the present model this implies that Z 
is continuous in the limits A + O+ and el  + 0-. It follows that Z must pass through the 
two points (-1,2) and (0, -1). A schematic plot of this branch of Z is now shown in 
figure 3. Note that the duality relation (4) maps this locus outside the physical region. A 
consequence of our conjectured Z is that a unique transition exists in all isotropic 4 = 3 
antiferromagnetic models. 

f 

Figure 3. Critical trajectory Z (the broken lines) in the 4 = 3 isotropic model. The line y = 3 
and the point P at (0, -3) are the fixed points. 

6. Dilute Potts model on the honeycomb lattice 

Results of this paper can be used to determine the exact critical point of a dilute Potts 
model on the honeycomb lattice. 

In a dilute Potts model the sites of a regular lattice can be either occupied by atoms 
or be vacant, with two atoms occupying neighbouring sites interacting with a Potts 
interaction -Eaii. While not much is known about this dilute model in its most general 
form, the critical point has been determined for a decorated lattice where the annealed 
vacancies are confined to the decorating sites (Wu 1980). To remove the more stringent 
restriction of decorating vacancies, we now consider a honeycomb lattice for which 
vacancies can occur on one of the two sublattices. The situation is shown in figure 4. 

We consider again an annealed model and attach a fugacity z to each vacancy. 
Summing over the sites (black circles) where vacancies may occur, we find the resultant 
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to be precisely the isotropic model discussed in the previous section. This equivalence is 
shown in figure 5 .  The relations between (PE, z )  and (f, y )  are 

f = v 2 ( 3 v  + q -I- t)-', Y = vf (17) 
where 

U = exp(PE) - 1. 

Figure 4. A dilute Potts model on the honeycomb Figure 5. Equivalent two- and three-site Potts 
lattice. The open circles are always occupied by interactions. 
atoms while the black circles can either be occupied 
or vacant. 

For real E ,  z 2 0 and q L 3, it is clear that f > 0 and y L -f. Thus we are always in the 
ferromagnetic region. Criticality then occurs exactly at y = q or 

(18) 

Thus we have at least one dilute Potts model on a regular lattice for which the exact 
criticality is known. The result (18) can be used to check the accuracy of other 
approaches, such as the renormalisation group (Nienhuis et a1 1979, 1980). 

v 3  = q ( t  + q  + 3 u ) .  

7. Conclusion 

The q-state Potts model on the triangular lattice with two- and three-site interactions 
(in every other triangle) has been considered. In the ferromagnetic region the exact 
critical point is determined under the assumptions that the transition is unique and that 
the singularity is continuous in the parameter space. In the antiferromagnetic model a 
transition exists only for q=3,  regardless of the isotropy of the interactions. This 
contrasts with the Ising (q  = 2) result for which a transition exists only for anisotropic 
interactions. Finally, we expect no transition in the isotropic paramagnetic model. 
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